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Introduction

Earth surface that constitutes the Nature has become suitable to 
sustain life through changes in a long course of time. This suit-
ability is based on average conditions having otherwise extremes 
in respect of environmental factors creating marginal habitats. 
Plants and animals living in such habitats are being challenged 
by harsh environment and consequently they have evolved adap-
tive strategies to survive. Accordingly, such environmental pro-
file determines the natural distribution of plant species. Again, 
gradual changes in environment with time call for a change in 
successive vegetation pattern differing in adaptive strategies. 
Besides such spontaneous changes that occur through ages plants 
are now subjected to threats of climate changes emerging from 
global warming that has been a major issue to all the nations for 
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Responses of plants to water stress may be assigned as either 
injurious change or tolerance index. One of the primary and 
cardinal changes in response to drought stress is the generation 
of reactive oxygen species (ROS), which is being considered as 
the cause of cellular damage. However, recently a signaling 
role of such ROS in triggering the ROS scavenging system that 
may confer protection or tolerance against stress is emerging. 
Such scavenging system consists of antioxidant enzymes like 
SOD, catalase and peroxidases, and antioxidant compounds 
like ascorbate, reduced glutathione; a balance between 
ROS generation and scavenging ultimately determines 
the oxidative load. As revealed in case of defense against 
pathogen, signaling via ROS is initiated by NADPH oxidase-
catalyzed superoxide generation in the apoplastic space (cell 
wall) followed by conversion to hydrogen peroxide by the 
activity of cell wall-localized SOD. Wall peroxidase may also 
play role in ROS generation for signaling. Hydrogen peroxide 
may use Ca2+ and MAPK pathway as downstream signaling 
cascade. Plant hormones associated with stress responses like 
ABA and ethylene play their role possibly via a cross talk with 
ROS toward stress tolerance, thus projecting a dual role of ROS 
under drought stress.
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last few decades. This has been a great concern for biodiversity 
that is being lost at faster rate.

Water Stress and Plant Responses

Water stress or drought is one of the consequences of erratic rain-
fall and becomes a constraint to the plants, both wild species as 
well as crop plants. Moreover, most soil has a variable wettability 
resulting in a heterogeneous moisture profile following precipi-
tation or irrigation.1 Plants naturally distributed in dry habitats 
with water scarcity are armoured with constitutive morphological 
and anatomical modifications that help to conserve water. This 
kind of resistance is usually referred to as drought avoidance or 
postponement. On the other hand, mesophytes having different 
degree of tolerance to water stress mostly rely upon metabolic 
adaptations. Mechanism of such tolerance entails a variation in 
the detail network and cascade of events or reactions leading 
finally to alleviation of potential stress-induced cellular injuries 
depending on the plant species that have evolved through envi-
ronmental changes.

Like all other stresses, water stress may also be imposed gradu-
ally or suddenly in nature as well as in agricultural conditions, 
though a gradual decline in soil water content is more common 
under field conditions. Depending on the speed of imposition and 
magnitude of stress, responses of plants to stress vary. Levitt2 has 
compiled the responses of plants to stresses as injuries and adaptive 
changes that provide a coherent frame of reference. Water stress, 
in particular, is an environmental constraint often faced by plants 
in their life cycles limiting survival, reproduction and yield. Plant 
responses to water stress or drought have been critically reviewed 
by a number of authors.3-7 Some of these responses have adaptive 
value in conferring protection while others might represent cel-
lular damage caused by water deficit.8,9 Drought stress often exac-
erbates the effect of other stresses and, at the same time, several 
different abiotic stresses may result in water stress.10

Responses of plants to stress may be revealed at a whole plant 
level as an integrated tissue system while some of the responses 
occur at the cellular level. However, in case of the former also 
some changes in the cellular level are to be considered pivotal 
for the final response but requiring the presence or activities of 
cells of other parts of the plant. For example, closing of stomata 
results from some subtle biochemical and molecular changes in 
the guard cell itself but this event is ultimately induced by the 
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of ROS is the chloroplast where the photosynthetic electron 
transport system may become overactive causing a spillover of 
reducing power that is responsible for reduction of oxygen to 
different ROS.28,29 Though such ROS generation occurs under 
normal condition, it is much more aggravated under stresses.30 
Similar enhanced production of ROS, particularly H

2
O

2
, also 

occurs in leaves during senescence in light causing chlorophyll 
degradation, which can be retarded by treatment with DCMU, 
an electron transport inhibitor.24 Peroxisomes are another site of 
superoxide and H

2
O

2
 production because of several key meta-

bolic reactions including photorespiration31 and are the major 
contributor to the cellular pool of H

2
O

2
.18 On the other hand, 

mitochondrial electron transport is also a source of ROS like 
superoxide and H

2
O

2
 particularly under stresses.32 ROS are also 

generated at the plasma membrane level or extracellularly in the 
apoplast though a transmembrane enzyme, NAD(P)H oxidase, 
which transfers electrons from cytoplasmic NAD(P)H to O

2
 to 

form O
2
·- and subsequently H

2
O

2
 and OH·.33,34 In addition to 

NADPH oxidase, pH-dependent peroxidase, germin-like oxalate 
oxidases and amine oxidase have also been proposed to be the 
source of H

2
O

2
 in the apoplast.35

The evolution of aerobic metabolism unavoidably brought the 
plants under the threat of ROS that are produced both under nor-
mal and stressed condition, the balance being tilted in the latter. 
Accordingly, plants have evolved the protection or defense mecha-
nism to scavenge ROS by antioxidant system, both enzymatic and 
non-enzymatic. Among the antioxidant enzymes superoxide dis-
mutases (SODs) that can dismutate O

2
·- into more stable H

2
O

2
, 

constitute the first line of defense against ROS and are present in all 
subcellular locations.36 Based on the requirement of metal cofac-
tor SODs are classified into three groups: Fe SOD, Mn SOD and 
Cu-Zn SOD. Fe SODs are located in the chloroplasts, Mn SODs 
are in mitochondria and peroxisomes and Cu-Zn SODs in the 
chloroplasts, the cytosol and the extracellular (apoplast) space.36 
Hydrogen peroxide is subsequently detoxified by enzymes like cat-
alase, ascorbate peroxidase and glutathione peroxidase. Catalase 
can act on H

2
O

2
 directly, while the latter enzymes require ascor-

bate and glutathione, respectively, as electron donors.30 Catalase 
that has low affinity for H

2
O

2
 thereby removing the bulk of H

2
O

2
, 

is localized mostly in peroxisomes. On the other hand, ascorbate 
peroxidase has a higher affinity for H

2
O

2
 and is found in chlo-

roplasts, mitochondria, peroxisomes and cytsol. Thus ascorbate 
peroxidase being located in every ROS producing compartment 
may function as a fine regulator of intracellular ROS level.10

Among the nonenzymatic antioxidants the major cellu-
lar redox buffers are ascorbate and glutathione (GSH), both of 
which are present in different cellular compartments. Mutants 
with decreased ascorbic acid levels or altered GSH content are 
hypersensitive to stress. GSH is oxidized by ROS forming oxi-
dized glutathione (GSSG) and ascorbate is oxidized to mono-
dehydroascorbate (MDA) and dehydroascorbate (DHA), which 
can be reduced back to GSH and ascorbate, respectively through 
the ascorbate-glutathione cycle37 that plays important role in 
ameliorating oxidative stress. Other antioxidant compounds 
playing important role in ROS scavenging are tocopherol, flavo-
noids, alkaloids and carotenoids.

signaling transduced by other cells like root cells. Sometimes a 
comparison between cellular response and whole plant response 
may reveal the level of organization where the adaptation oper-
ates.11 Besides, physiological stage for studying stress responses 
also becomes important. Thus seeds are very unique system that 
behaves differently.12 Seed germination and seedling growth 
declines with increasing water stress13,14 while proteolysis in coty-
ledons during storage mobilization is retarded by water stress.15 
Metabolic changes that occur in plants, particularly mesophytes, 
in response to water stress have been major targets while search-
ing for molecular mechanism of stress tolerance.6 Such studies 
have been strengthened further with the aid of molecular tools 
like microarray and differential expression of genes.16

Reactive Oxygen Species (ROS)  
and Oxidative Metabolism

It is now well established that virtually all biotic and abiotic 
stresses induce or involve oxidative stress to some degree, and 
the ability of plants to control oxidant levels is highly correlated 
with stress tolerance.17 Drought stress is reported to increase the 
production of reactive oxygen species (ROS) and increase the 
oxidative load in plants.18 An increase in ROS levels can provoke 
a partial or severe oxidation of cellular components inducing 
redox status changes, so continuous control of ROS and there-
fore of their metabolism is decisive under stress conditions.19 
Metabolism of ROS is of paramount importance in relation 
to control of oxidative physiology of plants. The kinds of ROS 
that have been investigated in plants include hydrogen peroxide 
(H

2
O

2
), superoxide anion (O

2
·-), hydroxyl radicals (.OH), singlet 

oxygen (1O
2
) and nitric oxide (NO). H

2
O

2
, O

2
·- and ·OH can 

convert to one another.20,21 Such conversion may occur spontane-
ously or catalyzed by enzymes.22 ROS metabolism in plants has 
become a frontier of research considering the differential action 
of ROS depending on the cellular compartments of their occur-
rence forming a complex network.23

In the ROS family hydrogen peroxide assumes most importance 
as regard to its various roles in plant growth, development and 
metabolism. It is not a free radical, but potentially reactive oxygen 
that becomes more damaging in presence of transition metal (e.g., 
Fe2+). Extensive studies have demonstrated the role of hydrogen 
peroxide during stress and senescence as deleterious to the cellular 
macromolecules as well as regulators in case of different plant pro-
cesses.17,21,24-26 Compared with hydrogen peroxide superoxide and 
hydroxyl radicals are less stable and cannot cross the membrane 
that makes them less suitable as signal molecule. Under normal 
conditions, the half-life of H

2
O

2
 is probably 1 ms, while that of 

superoxide and singlet oxygen is at the level of microseconds and 
hydroxyl radical is quite unstable (1 ns).27 However, these latter 
forms are more reactive than H

2
O

2
 causing severe damage locally.

Balance between ROS Production  
and ROS Scavenging

Site and physiological stage of ROS generation play important 
role in specific action of ROS.19 In green plant parts major source 



©2011 Landes Bioscience.
Do not distribute.

www.landesbioscience.com	 Plant Signaling & Behavior	 1743

H
2
O

2
, the latter may also serve as the substrate for lignin required 

for cell wall composition. These peroxidases are grouped under 
class III peroxidases that being located in cell wall play a diverse 
role in plants.48,49 Their role in defense against pathogens is well 
defined.50 The specificity of the cellular ROS signal can be deter-
mined by its site of production, control and transduction.29 Hence 
the different plant cell compartments will influence differentially 
the setting of the cellular redox signal under drought stress.

Downstream signaling of ROS or hydrogen peroxide is likely 
to occur via calcium and reversible protein phosphorylation.25,26 
Changes in cytosolic free calcium ([Ca2+]

cyt
) have often been 

reported under abiotic and biotic stresses and ROS including 
H

2
O

2
 can activate hyperpolarization-activated calcium chan-

nels (HACCs) present on the plasma membranes51 to increase 
the Ca2+ influx. Intracellular Ca2+ can again stimulate directly 
NADPH oxidase to produce ROS in the apoplast thus consti-
tuting a positive feedback loop.52 On the other hand, reversible 
protein phosphorylation is reported to be involved in down-
stream signaling following ROS generation25 and several types 
of protein kinases have been shown to be activated by H

2
O

2
,53 

but such activation is probably not mediated by Ca2+, as no Ca2+-
dependent kinase under H

2
O

2
 regulation has been reported in 

reference 25. However, several reports are there connecting 
H

2
O

2
 with mitogen activated kinase (MAPK) signaling cas-

cade, which, in turn, can modulate gene expression via activa-
tion of transcription factors.10,25,26 Such regulated genes seem to 
be involved in cellular protection and repair process as some of 
the gene products are known for desiccation tolerance and DNA 
damage repair.54 A cDNA microarray study in Arabidopsis has 
shown that H

2
O

2
 can upregulate 113 genes while downregulate 

62 genes which suggests that H
2
O

2
 is likely to play a key role in 

orchestration of plant drought responses modulating Ca2+ sig-
naling, MAPK cascades and gene expression.55 Besides activat-
ing MAPK, H

2
O

2
 can inhibit protein phosphatases like PP2C 

by oxidizing directly cysteine residues; such PP2Cs (ABI1 and 
ABI2) are negative regulators of ABA action.26 Thiol modifica-
tion could be one way of H

2
O

2
 perception.53 Indeed, because of 

small size of H
2
O

2
, a direct interaction with proteins through 

thiol modification has been taken as the means for signal propa-
gation instead of specific recognition of H

2
O

2
 by a receptor pro-

tein.22,56 Another signaling molecule, nitric oxide (NO) may also 
react with thiol groups of proteins many of which are also found 
to be the targets of H

2
O

2
 57 thus converging H

2
O

2
 and NO to a 

common point of interaction.

Phytohormones and their Cross Talk with ROS

Plant hormones constitute a battery of regulators involved in 
control of physiological and metabolic processes and also likely 
to mediate the responses of plants to environmental stresses. 
In several instances ROS are implicated as second messengers 
working downstream of these hormones.58 Among the hor-
mones ABA is the most important one playing role in signaling 
for tolerance against stresses including drought. Drought stress 
induces enhanced accumulation of ABA and triggers down-
stream responses that confer drought tolerance to plants. One 

An appropriate intracellular balance between ROS generation 
and scavenging is maintained as a result of efficient coordination 
of reactions in different cell compartments and is governed by a 
complex network of prooxidant and antioxidant systems.21 Such 
balance may be perturbed by stresses including drought; how-
ever, based on the capacity to maintain or re-establish the redox 
homeostasis a plant species may be said as tolerant to stress. Thus, 
besides the levels of osmolytes like proline and sugars,38 compara-
tive changes in activities of antioxidant enzymes in response to 
water stress have often been used for selection of drought resis-
tant plant.39,40 Again, preferential scavenging of particular ROS 
occurs depending on the cellular compartment, physiological 
stage and plant species resulting in differential ROS signature 
of the stressed cell or plant. Thus both a decline and increase in 
catalase and SOD activity has been recorded under water stress, 
although transgenic plants overexpressing these enzymes acquire 
higher tolerance to drought stress as well as oxidative stress than 
respective wild plants.10 Differential sensitivity and affinity of 
catalase and ascorbate peroxidase to ROS is suggestive for their 
differential role in ROS scavenging—catalase counteracts exces-
sive production under severe drought stress and reducing the 
ROS level that is scavenged subsequently by APX and ascorbate-
glutathione cycle.

Dual Action of ROS:  
Damaging and Signaling for Protection

A steady-state cellular ROS level prevails under normal condi-
tions because of a balance between ROS generation and scaveng-
ing. Stresses including drought stress shift this balance with more 
ROS being produced than are metabolized creating an oxidative 
stress. But before reaching this point when ROS production over-
whelms scavenging action an early rise in ROS level can act as a 
signaling for acclimation or defense response. Such a signaling 
role of ROS has been understood well in case of defense against 
pathogens where an oxidative burst initiates the process of sig-
naling for defense.41 Indeed ROS have now been recognized to 
serve positive roles in growth and development apart from their 
destructive role induced by stresses. Thus ROS including H

2
O

2
 

have been demonstrated to play role in radicle emergence during 
seed germination,42,43 root growth and root hair elongation44,45 
as well as defense against pathogens during seed germination.46

Relative stability of H
2
O

2
 compared with other ROS and its 

ability to cross the membrane makes it suitable for signaling. It 
can induce the intracellular ROS scavenging system by activating 
the antioxidant enzymes and also by modulating the expression 
of genes of these enzymes.47 For the purpose of signaling, either 
in case of stress responses or growth and development, the site 
and amount of ROS production should be under tight control. 
One of the most important sites to initiate the defense or accli-
mation response via ROS must be the cell wall. Most vulnerable 
enzyme for ROS production in this compartment is NADPH 
oxidase that produces O

2
·-, which, in turn, is dismutated to H

2
O

2
 

either spontaneously or by the action of cell wall localized SOD.45 
Wall-bound peroxidases, apart from acting as a H

2
O

2
 scavenger, 

also play a role in ROS signaling by generating ROS like O
2
·- and 
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cascades used by hormones in controlling stress responses as well 
as other physiological and developmental processes.

Final Words

Undoubtedly, drought stress induces ROS generation as a pri-
mary response of plant and this may be mediated by hormones 
like ABA and ethylene as well, which may sometimes play a 
downstream role too. Gross level of ROS could exacerbate the 
stress induced damages to most of the cellular components unless 
compromised because of ROS scavenging by antioxidant system. 
However, depending on spatial and temporal ROS generation 
and scavenging (ROS management) responses can be charac-
terized as toward conferring protection by arousing the protec-
tion system or as directly leading to injuries or death. Gradual 
imposition of drought stress, which is more common in nature, 
probably triggers ROS generation in the apoplast by plasma 
membrane-localized NADPH oxidase where Ca2+ plays a role as 
an upstream as well as downstream messenger forming a positive 
feedback loop. Apoplast is ideal site for initiation for signaling 
by ROS (localized oxidative burst) as this compartment has less 
redox buffering capacity,18 which could have otherwise diffused 
the signal strength. Efficiency for such an apoplast based ROS 
signaling system has already been appreciated in case of defense 
against pathogen (biotic stress). Now the fate of the cellular sys-
tem subjected to water stress depends on whether intracellular 
ROS scavenging system, being stimulated by the ROS signal of 
extracellular origin, keeps the oxidative load low on the cellular 
components or a rapid intracellular ROS accumulation has taken 
over before defense system is put in place. This again depends 
on speed and magnitude of stress imposition as well as the plant 
system subject to the stress, the latter being variable genetically 
as regard to the chronology and propensity of ROS management 
toward orchestration of defense related changes under stress.

of the well-studied responses in plants to water stress is the sto-
matal closing induced by ABA. Recent studies have shown that 
such response is mediated by ROS, particularly H

2
O

2
, which is 

synthesized by plasma membrane bound NADPH oxidase.59,60 
This is supported by the molecular evidence showing increased 
expression of two homologs of rboh (AtrbohD and AtrbohF ), 
genes encoding catalytic subunits of NADPH oxidase, in guard 
cells by ABA treatment and double mutants (atrbohD/F ) were 
impaired in stomatal closing and calcium channels in response 
to ABA and rescued by H

2
O

2
 application.61 H

2
O

2
 mediates sto-

matal closure by elevating cytosolic Ca2+ level through activa-
tion of channels.60,62,63 Evidence on direct inactivation of two 
type 2C phosphatases, PP2Cs (ABI1 and ABI2) that func-
tion as negative regulators of ABA signaling, by H

2
O

2
 further 

strengthen the cross talk between ABA and H
2
O

2
 in closing of 

stomata induced by water stress.64 Added to this is one serine/
threonine protein kinase (OST1) that acts upstream of ABA-
induced ROS production during stomatal closure.65 At least 
in one case ROS has been shown to be involved in drought-
induced ABA synthesis.66

Another hormone often associated with stress is ethylene, 
production of which is enhanced by stresses including osmotic 
stress and such synthesis is dependent on ROS.67 Similar ROS-
induced ethylene synthesis has also been reported in case of 
wound response and defense against pathogens.68,69 Ethylene has 
also been implicated, at least in some plants, for stomatal closure 
and ETR1, one of the ethylene receptors, is involved in sensing 
H

2
O

2
 and subsequent stomatal closure.70 Another possible point 

of cross talk would be MAPK cascade that may be shared by both 
H

2
O

2
 and ethylene,71 though an ethylene-independent MAPK 

acitivity is reported to be induced by H
2
O

2
.72 A role of MAPK 

in case of ABA-induced stomatal closure has also been reported 
in reference 73. It appears that hormones either transduce signals 
through ROS or ROS may have a cross talk with the signaling 
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